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Abbreviations used

AD: Atopic dermatitis

FLG: Filaggrin

ILC2: Group 2 innate lymphoid cell

JAK: Janus kinase

OSMR: Oncostatin M receptor

STAT: Signal transducer and activation of transcription

TSLP: Thymic stromal lymphopoietin

TYK2: Tyrosine kinase 2
Atopic dermatitis (AD) is a heterogeneous, chronic, relapsing,
inflammatory skin disease associated with considerable
physical, psychological, and economic burden. The pathology of
AD includes complex interactions involving abnormalities in
immune and skin barrier genes, skin barrier disruption,
immune dysregulation, microbiome disturbance, and other
environmental factors. Many of the cytokines involved in AD
pathology, including IL-4, IL-13, IL-22, IL-31, thymic stromal
lymphopoietin, and IFN-g, signal through the Janus kinase
(JAK)–signal transducer and activation of transcription (STAT)
pathway. The JAK family includes JAK1, JAK2, JAK3, and
tyrosine kinase 2; the STAT family includes STAT1, STAT2,
STAT3, STAT4, STAT5A/B, and STAT6. Activation of the JAK-
STAT pathway has been implicated in the pathology of several
immune-mediated inflammatory diseases, including AD.
However, the exact mechanisms of JAK-STAT involvement in
AD have not been fully characterized. This review aims to
discuss current knowledge about the role of the JAK-STAT
signaling pathway and, specifically, the role of JAK1 in the
pathology and symptomology of AD. (J Allergy Clin Immunol
2023;152:1394-404.)
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Atopic dermatitis (AD), also called atopic eczema, is a
heterogeneous, chronic, relapsing, inflammatory skin disease
associated with considerable physical, psychological, and eco-
nomic burden.1 Most cases arise during childhood, although
adult-onset AD is increasingly recognized.2 The lifetime preva-
lence of AD is up to 30% in some geographic regions.1,3 AD is
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characterized by pruritic, eczematous, and painful skin lesions
that manifest as erythematous patches with oozing and crusting
at early stages and scaling, fissuring, and lichenification at later
stages.1 Lesions can be localized to certain areas, such as the folds
of the extremities or the face, or they can be widespread in more
severe disease.4 The distribution of lesions also differs between
adult-onset and childhood cases.4,5

Over the past few decades, human, murine, and in vitro studies
have expanded our understanding of AD pathophysiology, and
clinical trials have led to an increase in the availability of effective
AD treatments with acceptable safety profiles.1,6-8 AD is a hetero-
geneous disease with a complex pathology.1,9,10 Abnormalities in
immune and skin barrier genes, dysregulation of innate and
adaptive immune responses (including cytokine release), micro-
biome disturbance (especially Staphylococcus aureus coloniza-
tion), and environmental factors are all thought to play a role in
development of the disease.1,9 Several subtypes of AD are also
recognized; for example, Asian AD cases are often characterized
by higher TH17 cell polarization, whereas European AD cases are
characterized by TH2 and TH22 cell activation.11 Furthermore,
differences exist between pediatric-onset (more intense TH2,
TH22, and/or TH17 cell upregulation) and adult-onset AD (more
prominent TH1 cell activation).12

Many of the cytokines involved in AD pathology, including IL-
4, IL-13, IL-22, IL-31, and thymic stromal lymphopoietin
(TSLP), signal through the Janus kinase (JAK)–signal transducer
and activation of transcription (STAT) pathway, with increased
IFN-g in chronic disease (Box 1).13-15

JAKs are activated following ligand binding to cytokine
transmembrane receptors, and in turn, they phosphorylate and
activate STATs, which then translocate to the cell nucleus to
regulate transcription of target genes (Fig 1).14-24 The JAK family
includes JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2); the
STAT family includes STAT1, STAT2, STAT3, STAT4,
STAT5A/B, and STAT6.14 JAK1, JAK2, and TYK2 are quite
ubiquitously expressed in mammalian cells, whereas JAK3 is pre-
dominantly expressed in hematopoietic cells. Although many
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Box 1. What is known about the topic?

What is already known about this topic? d Key type 2/TH2 and type 22/TH22 cytokines involved in the pathogenesis of AD,

including IL-4, IL-13, IL-22, IL-25, IL-31, IL-33, and TSLP, signal via the JAK-STAT

pathway

d TH2 and TH22 cytokines have also been shown to drive features and symptoms of AD,

including barrier defects, inhibition of antimicrobial peptides, dysbiosis, and pruritus

What does this article add to our knowledge? d AD evolves over time and shows clinical and molecular differences across various dis-

ease phenotypes based on geographic regions, patient age (pediatric vs adult patients),

and disease severity; thus, targeting a single cytokine pathway may not be a feasible

treatment strategy for patients with AD

d JAK inhibitors represent a therapeutic strategy by simultaneously disrupting many of

the pathogenic cytokine signals in target tissues and alleviating symptoms such as

pain, and thus, they can potentially enhance the approaches to treatment of AD

How does this study affect current

management guidelines?

d This review adds key knowledge to existing data and paves the path to better under-

standing of the molecular mechanisms underlying AD and the role of a new class of

oral medications that target various cytokines involved in the pathology of AD, allowing

physicians to make mechanistic-based prescription decisions
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cytokines can activate 3 of the 4 members of the JAK family (IL-
4, IL-6, IL-13, and IL-23), others are more limited to JAK1 or
JAK2 and TYK2 heterodimers (IL-12 and IL-22), JAK1 and
JAK2 heterodimers (IL-31, TSLP, and IFN-g), or JAK2 homo-
dimers (IL-25 and IL-33) (Fig 1).

Activation of the JAK-STAT pathway has been implicated in
the pathology of several immune-mediated inflammatory dis-
eases, including inflammatory bowel disease, rheumatoid
arthritis, and psoriasis.25 In mouse models of dermatitis, exces-
sive JAK1 activation induces spontaneous hyperproliferation of
keratinocytes and phosphorylation of STAT proteins, leading to
disruption of the skin barrier and development of progressive pru-
ritic dermatitis.26,27 Furthermore, hyperphosphorylation of
epidermal JAK1 has been detected in skin samples from patients
with AD, suggesting that the JAK-STAT pathway plays a role in
AD.26 However, less is known about the exact mechanisms of
JAK-STAT involvement in AD. The objective of this review is
to discuss current knowledge regarding the role of the JAK-
STAT signaling pathway and specifically the role of JAK1 in
the pathology and symptomology of AD.
SKIN BARRIER DYSFUNCTION IN AD
Skin barrier dysfunction plays a critical role in the development

of AD.1,28,29 In 20% to 40% of patients with AD, skin barrier
dysfunction results from mutations in the filaggrin gene
(FLG).1,28 FLG encodes the key epidermal structural protein
FLG, and loss-of-function mutations of FLG are associated not
only with skin barrier dysfunction but also with increased risk
of AD and overall more severe AD.1,30 However, the majority
of individuals with FLGmutations do not develop AD, suggesting
that other factors are also involved.1 Increased permeability of the
skin has been associated with deficiencies of structural
proteins (FLG, loricrin, and involucrin), lipids (such as
ceramides), and tight junction proteins (eg, claudins) of the
skin.1,30 Furthermore, reduced Toll-like receptor function and
reduced keratinocyte production of antimicrobial peptides, which
are needed to control microbial replication (eg, replication of
S aureus) on the skin, have been linked to disruption of the
epidermal barrier.28,29
Immune-mediated mechanisms also contribute to skin barrier
alterations. Cytokines that signal via the JAK-STAT pathway (eg,
IL-4, IL-13, IL-22, IL-25, IL-31, IL-33), and especially JAK1-
STAT3 (Fig 1), are involved in downregulating skin barrier
proteins (including FLG, loricrin, and involucrin) and in the
inhibition of keratinocyte terminal differentiation and lipid and
antimicrobial peptide synthesis, all of which can lead to increased
skin permeability.15,29-31
AD LESION DEVELOPMENT
Patients with AD can present with clinically normal skin or

with acute or chronic lesions (Fig 2). In nonlesional/normal skin,
TH2 cytokines IL-4 and IL-13, FLG, and other barrier gene muta-
tions or environmental factors contribute to the initial epidermal
barrier disruption.30,32-34 This allows allergens, microbes, and
environmental pollutants to penetrate the epidermis, where they
stimulate keratinocytes to produce cytokines, such as IL-1b, IL-
18, IL-25, IL-33, and TSLP, to further amplify the local immune
response.1,28,35 These mediators trigger the influx and activation
of dendritic cells, which in turn initiate type 2 and TH22 cell im-
mune responses.7,28,32,33

In acute lesions, TH2 cells infiltrate the skin, followed by TH22
cells, and to a lesser extent, TH1 and TH17 cells, with subsequent
effector cytokine release (Fig 2).28,32,33 Activated keratinocytes
release IL-25, IL-33, and TSLP, which further promote TH2 cell
responses.28,32 Furthermore, group 2 innate lymphoid cells
(ILC2s), the levels of which are increased in AD lesions versus
in healthy skin, can also produce TH2 cytokines and promote
type 2 responses.7 Release of the TH2 cytokines IL-4, IL-13,
and IL-31 and the TH22 cytokine IL-22 further contributes to
epidermal barrier disruption and hyperplasia.28,33 Critically, IL-
4, IL-13, IL-31, and TSLP also drive symptoms including
pruritus, and the resultant scratching leads to further epidermal
barrier damage and inflammation.1,28

In chronic lesions, intensified TH2 and TH22 cell activation oc-
curs and inflammation is further amplified by increased levels of
TH1 cell–derived IFN-g, which induces keratinocyte apoptosis
and the recruitment of additional inflammatory cells into the
skin, leading to prolonged itch-scratch cycles and lichenification



FIG 1. AD cytokines, JAK-STAT signaling pathways, and target cells. After being produced by their source

cells, cytokines bind their receptors and activate the JAK-STAT signaling pathway. JAKs are activated

following ligand binding to cytokine transmembrane receptors, and in turn, they phosphorylate and activate

STATs, which then translocate to the cell nucleus to regulate transcription of target genes in target cells. B, B
cell; Baso, basophil; DC, dendritic cell; DRG, dorsal root ganglia neuron; EOS, eosinophil; Fib, fibroblast;

Ker, keratinocyte; MC, mast cell; Mono, monocyte; MP, macrophage; NK, natural killer cell; R, receptor; T,
T cell.
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(Fig 2).32,33,36 Overall, the immune pathology of AD is complex
and involves various differentiated TH cell subtypes, activated
keratinocytes, and multiple inflammatory cytokines. We will
next look at these cytokines in more detail.
THE JAK-STAT PATHWAY IN THE PATHOLOGY OF

AD

Type 2 cytokine: IL-4
Local production of IL-4, which is produced by cells such as

TH2 cells, mast cells, and eosinophils in the skin, is associated
with acute AD.1,15,37 In addition to being involved in B-cell pro-
liferation and IgE isotype switching, IL-4 regulates TH2 target
genes by signaling through JAK1, JAK3, and STAT6 (Fig
1).1,15,24 The role of IL-4 in TH2 cell differentiation and AD
has been demonstrated in animal studies.38,39 Transgenic mice
that overexpress IL-4 develop AD-like skin lesions,39 and
mice constitutively expressing active STAT6 develop an atopic
phenotype and skin inflammation in an IL-4–dependent
manner.40 However, STAT6-deficient mice can also develop
AD-like skin lesions via a TH2 cell–independent mechanism.41

IL-4 (or IL-13 [see later]) also attenuates expression of key
structural proteins, including FLG, loricrin, and involucrin, as
well as tight-junction–related proteins, such as claudin, leading
to disruption of the normal integrity of the keratinocyte archi-
tecture,42 and it upregulates additional TH2 cytokines, including
IL-5, IL-10, and IL-13,38,39 and chemokines known to have a
role in AD as well as other proinflammatory cytokines (eg,
IL-1a, IL-19, IL-20, IL-25).43 The efficacy of IL-4 inhibition
in AD has also been demonstrated in clinical trials and in
real-world clinical practice using dupilumab, which inhibits
IL-4 and IL-13 activity.44,45
Type 2 cytokine: IL-13
IL-13 is secreted primarily by TH2 cells but is also by stimu-

lated ILC2s, mast cells, and eosinophils, among others.1,15,17,37

IL-13 shares some characteristics and functions with IL-4,
including promotion of B-cell proliferation and IgE switching,
but it also plays a role in pulmonary fibrosis and airway hyperre-
activity.15,17,46 IL-13 signals through JAK1, JAK2, TYK2, and
STAT6 to activate IL-13–responsive genes (Fig 1).1,15,17 Similar
to IL-4, IL-13 plays a role in AD pathology by attenuating
expression of several structural proteins (including FLG, loricrin,
involucrin, and claudin), disrupting keratinocyte integrity, and
stimulating keratinocytes to produce chemokines, leading to
recruitment of T cells and eosinophils.15,42,47 IL-13 is also amajor
inducer of the TH2 cell response independently of IL-4, indicating
an important role in AD pathology.47 A recent study demonstrated
that homeostatic production of IL-13 by dermal ILCs directs den-
dritic cell differentiation to promote a TH2 cell response and in-
hibits TH17 cell polarization in healthy skin.48 Similar to the
efficacy of IL-4, the efficacy of IL-13 inhibition in AD was
demonstrated with dupilumab in clinical trials and real-world
practice and with the IL-13 inhibitors tralokinumab (which is
approved for moderate-to-severe AD44,45) and lebrikizumab
(which has recently completed phase 3 trials).49
Type 2 cell–associated cytokine: IL-31
IL-31 is a TH2 cytokine produced by numerous cells, including

non-TH2 cells, such as cutaneous lymphocyte antigen–positive
(CLA1) T cells, dendritic cells, macrophages, and mast cells.22,50

The IL-31 receptor consists of IL-31RA and the oncostatin M
receptor (OSMR), the latter increasing the affinity of IL-31 binding
to IL-31RA.51,52 After binding to its receptor on eosinophils, den-
dritic cells, or keratinocytes, IL-31 signals through JAK1, JAK2,



FIG 2. Pathogenesis and stages of AD. Healthy skin versus development of AD lesions, which are divided

into nonlesional skin, acute lesions, and chronic lesions. In nonlesional skin, TH2 cytokines (IL-4 and IL-13),

FLG, and other barrier gene mutations or environmental factors contribute to the initial epidermal barrier

disruption. In acute lesions, TH2 cells infiltrate the skin, followed by TH22 cells and, to a lesser extent, TH1

and TH17 cells, with subsequent effector cytokine release. In chronic lesions, intensified TH2 and TH22 cell

activation occurs and inflammation is further amplified by increased TH1 cell–derived IFN-g. Red crosses

indicate signaling pathways affected by JAK inhibitors (see Fig 1 for more detailed pathways). CCL17,
CC-chemokine ligand 17; CCR, C-C chemokine receptor; CLA, cutaneous lymphocyte antigen; DC, dendritic
cell; EOS, eosinophil; H4R, histamine H4 receptor; IDEC, inflammatory dendritic epidermal cell; LC, Langer-

hans cell;MDC, macrophage-derived chemokine;OX40L, OX40 ligand; TRM, T resident memory cell. Adapt-

ed from Weidinger et al.1
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STAT1, STAT3, and STAT5, stimulating the secretion of proinflam-
matory cytokines (Fig 1).22,50 Elevation of plasma IL-31 level and
upregulation of IL-31RA in epidermal keratinocytes have been
reported in patients with AD, and IL-31 serum levels are correlated
with AD severity.22,50,53 At the initiation of the AD inflammatory
cascade, disruption of the skin barrier triggers IL-31 production
by TH2 cells.

22 Subsequently, IL-31 activates the secretion (by eo-
sinophils) of several cytokines and chemokines that then activate
TH2 cells, leading to the secretion of IL-4 and IL-13.22 The role
of IL-31 in the pathology of AD was demonstrated in studies of
nemolizumab, an antibody that blocks the IL-31 receptor, resulting
in rapid improvement in itch when compared with placebo.15,54
TH22 cytokine: IL-22
IL-22 is part of the IL-10 cytokine family, and its levels in AD

skin and blood are elevated. IL-22 is produced by TH17, TH22,
and gd T cells; it signals through JAK1 and TYK2, and it induces
phosphorylation of STAT1, STAT3, and STAT5 (Fig 1).16,36,55 Af-
ter binding to its receptor, which is expressed by epithelial cells,
IL-22 upregulates the expression of proinflammatory genes in
keratinocytes, resulting in keratinocyte proliferation and
epidermal acanthosis (Fig 1).36,55 In mouse models, IL-22 stimu-
lates TH2 cell responses in both acute and chronic AD lesions; it
leads to increased skin permeability and decreased expression of
FLG2 and claudin, and it increases susceptibility to S aureus
colonization.56 IL-22 targeting in AD significantly ameliorated
clinical disease severity, particularly in patients with more severe
disease and in those with higher IL-22 expression, indicating a
pathogenic role for IL-22 in AD, at least in a subset of
patients.57,58
TH1 cytokine: IFN-g
The TH1 cytokine IFN-g signals via JAK1, JAK2, STAT1, and

STAT3 and plays a key role in inflammation, macrophage



J ALLERGY CLIN IMMUNOL

DECEMBER 2023

1398 GUTTMAN-YASSKY ET AL
activation, and TH1 cell responses (Fig 1).59-61 IFN-g is secreted
during the chronic stages of AD and contributes to lymphocyte
extravasation, amplification and chronicity of the inflammatory
response, and skin thickening.16,59,60
TH1 and TH17 cytokines: IL-12 and IL-23
Although the role of IL-12 and IL-23 cytokines in psoriasis is

more firmly established,62 these cytokines may also play a role in
AD.63-65 IL-12 drives the development of TH1 responses, and IL-
23 is important for the development of TH17 responses (Fig 1).66

Both cytokines signal via JAK2, TYK2, STAT3 (IL-23), and
STAT4 (IL-23 and IL-12).13,16,67 Patients with AD show elevated
serum IL-12 levels, which are directly correlated with disease
severity.63,64 Some AD subtypes, such as AD in patients from
Asia and AD in children, show greater IL-23 and/or IL-17 levels
than do other subtypes, such as AD in European or US patients
or AD in adults, respectively.7,68,69 However, there are conflicting
reports on the benefit of targeting IL-12/IL-23 in AD,70,71 and
more studies are needed to clarify the role of IL-23/IL-17 across
the different AD phenotypes based on ethnicity and age.
Keratinocyte-derived alarmins: TSLP, IL-25, and IL-

33 cytokines
Alarmins, such as TSLP, IL-25, and IL-33, are released in

response to tissue damage and subsequently induce inflamma-
tion.1 Levels of TSLP, IL-25, and IL-33 are also elevated in
infants with early-onset AD.72 TSLP is expressed by keratino-
cytes, and when upregulated, they can lead to the development
of chronic skin inflammation.73 TSLP receptors are found on
various cell types, including dendritic cells, basophils, T cells,
and mast cells (Fig 1).73 After binding to its receptor, TSLP sig-
nals via JAK1 and JAK2 to activate STAT5.73,74 TSLP-activated
dendritic cells play a role in TH2 cell priming, which is character-
ized by release of high levels of IL-4, IL-5, and IL-13.73 TSLP
also has a critical effect on type 2 inflammation and basophils,
which produce IL-4.73

Keratinocytes also produce IL-25, the levels of which are
elevated in skin affected byAD.35 IL-25 has been shown to reduce
FLG synthesis in keratinocyte cultures, which could directly
result in skin barrier disruption.35 IL-25 has been shown to signal
via JAK2 and STAT5 and may thus play a role in AD in a JAK-
STAT–dependent way (Fig 1).75 Similar to IL-25, IL-33 is pro-
duced by keratinocytes, signals via JAK2, and has been shown
to be elevated in skin affected by AD.15,37,76 IL-33 stimulates
ILC2s to produce TH2 cytokines, especially IL-5 and IL-13, and
it also induces IL-31 production, promoting pruritus.15,37,76
IL-10 family of cytokines: IL-19
IL-19 is a proinflammatory cytokine that belongs to the IL-10

family of cytokines and has been reported to be induced by IL-4
and IL-17A.77,78 It signals via JAK1 and TYK2 to activate STAT 3
and STAT 5.79 IL-19 levels are elevated in the sera and lesional
skin of patients with AD and have been shown to be positively
correlated with disease severity and disease-associated markers
such as IL-4, thymus- and activation-regulated chemokine, and
absolute eosinophil count.78,80 In addition, IL-19 stimulates the
production of TH2 cells and may also play a role in bridging
TH17 to TH2 in AD.77
Taken together, the data indicate that themultiple inflammatory
cytokines that signal via the JAK-STAT pathway, and especially
JAK1, are involved in the pathology of AD (Fig 1). Inhibiting
JAK1 represents a logical therapeutic strategy by simultaneously
disrupting many of the pathogenic cytokine signals in target
tissues.
JAK-STAT IN AD IN PRURITUS AND PAIN
In addition to being involved in development of AD lesions, the

JAK-STAT pathway plays a critical role in development of the AD
symptoms, pruritus and pain. Pruritus is a key symptom of AD,
resulting from a complicated cascade that involves skin barrier
damage and influx of allergens and pathogens, and on a cellular
level, interaction between keratinocytes, immune cells, and nerve
fibers, often leading to an itch-scratch cycle that further
exacerbates lesions and contributes significantly to the burden
of the disease for the patient.81

IL-31 has been suggested as the key cytokine involved in the
development of pruritus, and severe pruritic skin lesions similar to
AD were observed in IL-31–overexpressing transgenic mice.22,82

Skin dendritic cells are critical cellular sources of IL-31 during
wound repair, and they are sufficient to induce itch in mice.83

IL-31–mediated activation of IL-31RA via JAK1 and JAK2
induces STAT3-mediated b-endorphin production by keratino-
cytes, which may contribute to the peripheral itching in
AD.22,53,84 IL-31 is believed to induce itching sensation by bind-
ing to and stimulating IL-31RA–positive dorsal root ganglia
fibers and by promoting the release of pruritic factors from
keratinocytes,22 including TSLP. Inhibition of IL-31 or IL-
31RA results in attenuation of scratching behavior in mice with
AD-like skin inflammation.51 Further, IL-31 activity seems to
be dependent on IL-31RA and OSMR receptors and blocking
either of these 2 receptors decreases IL-31–induced IL-4 and
IL-13 release by basophils.85

In addition to IL-31, IL-4 and IL-13 can activate human and
mouse dorsal root ganglia, which express the IL-4 and IL-13
receptors (IL-4RA and IL-13RA1), and activate neurons of the
itch-sensory pathway in a JAK1-dependent manner.86 Current ev-
idence suggests that IL-4 and IL-13 sensitize sensory neurons to
pruritogens, such as IL-31.86 Furthermore, IL-4 and neuronal
JAK1 are mediators of chronic itch in both inflammatory and
noninflammatory settings, and JAK inhibition has been shown
to improve pruritus symptoms in patients with chronic idiopathic
pruritus.86 This neuronal JAK1-mediated itch may be indepen-
dent of STAT.86

TSLP and IL-22 have also been shown to play a role in itch.
Keratinocytes release TSLP, which induces the secretion of
periostin via the JAK/STAT pathway and subsequently activates
sensory neurons to trigger histamine-independent itch.87,88 TSLP
may also trigger pruritus indirectly by stimulating the release of
IL-4 and IL-13, which in turn induce pruritus.73 Furthermore,
TSLP may play a role in maintaining the itch-scratch cycle in
AD based on increased TSLP expression after mechanical injury,
which in turn drives TH2 responses in skin.89

Overexpression of IL-22 caused chronic pruritic dermatitis in
mice with signs resembling those of human AD, such as pruritus,
skin barrier impairment, and enhanced antigen sensitization.56 In
mice, IL-22 administration enhances the pain response and
decreases the nociceptive threshold.90 IL-22 also induces produc-
tion of IL-1b, a proinflammatory cytokine that is associated with



TABLE I. Overview of topical and systemic therapies currently approved or in development for the treatment of AD

Therapy Target Type Approval status for AD

Approved therapies

Dupilumab IL-4, IL-13 Biologic (mAb) US, EU, Canada, UK, Japan

Tralokinumab IL-13 Biologic (mAb) US, EU, UK, Canada

Abrocitinib JAK1 SMA US, EU, UK, Canada, Japan

Baricitinib JAK1, JAK2 SMA EU, Japan

Delgocitinib (topical) JAK1, JAK2,

JAK3, TYK2

SMA Japan

Ruxolitinib (topical) JAK1/JAK2 SMA US

Upadacitinib JAK1 SMA US, EU, UK, Canada, Japan

Difamilast (topical) PDE4 SMA Japan

Cytokine inhibitors

Bermekimab IL-1a Biologic (mAb) Phase 2 (NCT03496974, NCT04021862)

CBP-201 IL-4Ra Biologic (mAb) Phase 3 (NCT05614817)

Benralizumab IL-5Ra Biologic (mAb) Phase 2 (NCT04605094, NCT03563066)

Ustekinumab IL-12, IL-23 Biologic (mAb) Phase 2 (NCT01945086, NCT01806662)

Lebrikizumab IL-13 Biologic (mAb) Phase 3 (NCT04250350, NCT04178967,

NCT04392154)

Secukinumab IL-17A Biologic (mAb) Phase 2 (NCT03568136, NCT02594098)

Fezakinumab IL-22 Biologic (mAb) Phase 2a (NCT01941537)

Risankizumab IL-23 Biologic (mAb) Phase 2 (NCT03706040)

Nemolizumab IL-31 Biologic (mAb) Phase 3 (NCT03989349)

Astegolimab IL-33 Biologic (mAb) Phase 2 (NCT03747575)

Etokimab IL-33 Biologic (mAb) Phase 2 (NCT03533751)

MEDI3506 IL-33 Biologic (mAb) Phase 2 (NCT04212169)

REGN3500 IL-33 Biologic (mAb) Phase 2 (NCT03738423)

Spesolimab IL-36R Biologic (mAb) Phase 2 (NCT03822832, NCT04086121)

JAK-STAT inhibitors

SHR0302 JAK1 SMA Phase 3 (NCT04875169)

Jaktinib Pan-JAK SMA Phase 3 (NCT05526222)

Other systemic inhibitors/therapies

ZPL-3893787 H4R SMA Phase 2 (NCT02424253)

FB825 mIgE Biologic (mAb) Phase 2 (NCT04413942, NCT05059509)

Omalizumab IgE Biologic (mAb) Phase 4 (NCT02300701)

Serlopitant NK1R SMA Phase 2 (NCT02975206)

Tradipitant NK1R SMA Phase 3 (NCT03568331, NCT04140695)

GBR830 OX40 Biologic (mAb) Phase 2 (NCT02683928, NCT03568162)

KHK4083 OX40 Biologic (mAb) Phase 3 (NCT05398445, NCT05651711)

KY1005 OX40L Biologic (mAb) Phase 2 (NCT03754309, NCT05131477

NCT05492578)

BLU-5937 P2X3 SMA Phase 2 (NCT04693195)

Apremilast PDE4 SMA Phase 2 (NCT01393158, NCT02087943)

BMS-986166 S1PR1 SMA Phase 2 (NCT05014438)

Etrasimod S1PR1, S1PR4, S1PR5 SMA Phase 2 (NCT04162769)

SCD-044 S1PR1 SMA Phase 2 (NCT04684485)

Topical therapies

Tapinarof AhR SMA Phase 3 (NCT05142774, NCT05014568,

NCT05032859)

ATI-1777 JAK1/JAK3 SMA Phase 2 (NCT04598269, NCT05432596)

Brepocitinib JAK1/TYK2 SMA Phase 2 (NCT03903822)

SHR0302 JAK1 SMA Phase 3 (NCT04717310)

HY209

(taureoxycholic acid)

GPCR19 SMA Phase 2 (NCT04530643)

ALX 101 LXR-b SMA Phase 2 (NCT03175354, NCT03859986)

Jaktinib Pan-JAK SMA Phase 2 (NCT04539639)

DRM02 PDE4 SMA Phase 2 (NCT01993420)

Hemay-808 PDE4 SMA Phase 2 (NCT04352595)

LEO 29102 PDE4 SMA Phase 2 (NCT01037881)

Lotamilast PDE4 SMA Phase 2 (NCT03394677, NCT02950922)

PF-07038124 PDE4 SMA Phase 2 (NCT04664153, NCT05375955)

Roflumilast PDE4 SMA Phase 3 (NCT04773587, NCT04773600,

NCT04804605, NCT04845620)

FB-401 TLR5, TNFR Bacterial strain Phase 2 (NCT04936113, NCT04504279)

(Continued)
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TABLE I. (Continued)

Therapy Target Type Approval status for AD

ATx201 (niclosamide) Skin microbiome Small molecule antibacterial Phase 2 (NCT03304470, NCT04339985)

B244 Skin microbiome Bacterial strain Phase 2 (NCT04490109, NCT03235024)

Omiganan Gram-positive/gram-negative

bacteria and fungi

Cationic peptide antimicrobial Phase 2 (NCT03091426, NCT02456480)

AhR, Aryl-hydrocarbon receptor; EU, European Union; GPCR, G protein–coupled receptor; H4R, type 4 histamine receptor; LXR, liver X receptor; mIgE, membrane form of IgE;

NK1R, neurokinin 1 receptor; P2X; purinoreceptor; PDE, phosphodiesterase; S1PR, sphingosine 1–phosphate receptor; SMA, small molecule antagonist; TLR, Toll-like receptor;

TNFR, TNF receptor; UK, United Kingdom; US, United States.
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neuropathic pain in rheumatoid arthritis (RA).90 IL-22 signals via
JAK1, TYK2, STAT1, STAT3, and STAT555 and induces
epidermal hyperplasia, production of S100A7 (psoriasin), and
differentiation abnormalities.91

Of note, histamine-induced itch, although present in AD, is not
the primary mechanism underlying AD-related pruritus, as
demonstrated by lack of effect of antihistamines for chronic
pruritus.92,93 Histamine-independent itch, triggered by prurito-
gens such as IL-31, IL-4, IL-13, and TSLP, seems to play a
more important role in chronic AD itch, as discussed earlier in
this review.92

Skin pain can be associatedwith itch-scratch butmay also be an
independent symptom of AD.94 Although the role of the JAK-
STAT pathway in pain is less well understood, multiple cytokines
that signal via the JAK-STAT pathway, such as IL-6, IL-22, and
IFN-g, have also been implicated in pain modulation.95,96

IL-6 is a proinflammatory cytokine that activates JAK1 and
JAK2 phosphorylation of STAT1 and STAT3 and plays a role in
regulating joint pain in rheumatoid arthritis.95,96 Neurons of the
spinal cord and dorsal root ganglia are susceptible to IL-6
signaling, and IL-6 alone or in complexwith soluble IL-6 receptor
has been shown to trigger pain.97

IFN-g is a TH1 cytokine secreted during the chronic stages of
AD and signals via JAK1, JAK2, STAT1, and STAT3.59-61 IFN-
g levels are increased in patients with chronic pain conditions,
and it is implicated in neuropathic pain.98-100 Spinal administra-
tion of IFN-g induced tactile allodynia in a dose-dependent
manner in wild-type rats but not in IFN-g receptor knockout
rats.101

Taken together, the data indicating that many cytokines
implicated in pruritus and pain transduce their signals via the
JAK-STAT pathway suggest that this pathwaymay play a key role
in these burdensome symptoms in AD.
TARGETED THERAPIES IN AD
As already discussed, AD is a complex, heterogeneous disease

involving numerous immune pathways that may differ depending
on geographic region, age at onset, disease severity, and other
factors and can evolve and change over time in the same
individual.5,9,68 Thus, a treatment strategy targeting a single in-
flammatory pathwaymaywork for one patient but not for another,
or it may work at one stage of a patient’s disease course but not at
another. Tralokinumab and dupilumab are the only biologic ther-
apies currently approved for AD. Dupilumab inhibits IL-4 and IL-
13 by targeting IL-4Ra, which signals through the JAK-STAT
pathway.44 Although dupilumab has been shown to be effective
in AD, it inhibits a single inflammatory pathway involved in
AD pathology, and some patients do not respond to treatment or
respond only partially.45 Several other therapies targeting specific
cytokines or molecules involved in the AD cascade, such as IL-
13, IL-22, IL-33, IL-31, IL-36, and TSLP inhibitors, are currently
in development (Table I). Although these therapies have the po-
tential to ameliorate the disease to some degree, targeting a single
pathology axis may limit efficacy in a disease as highly complex
and heterogeneous as AD. For example, although the IL-22 inhib-
itor fezakinumab significantly improved clinical outcomes (eg,
SCOring Atopic Dermatitis score, Investigator Global Assess-
ment finding, and body surface area involvement) compared
with placebo in a specific subset of patients with AD (ie, those
with severe AD or high baseline levels of IL-22 mRNA skin
expression), patients outside that subset received little benefit
from treatment.57,58 These data indicate that although the IL-22
axis plays a role in AD pathology, treatment targeting this axis
alone offers only modest benefit in a subset of patients. Similarly,
the IL-12/IL-23 inhibitor ustekinumab and IL-33 inhibitor aste-
golimab failed to reach clinical effects versus placebo in patients
with moderate to severe AD.71,102 These findings highlight the
complexity of the disease, the need for more personalized/strati-
fied treatment strategies, and the potential benefits of targeting
multiple inflammatory pathways with 1 molecule.103

JAK inhibitors, such as upadacitinib, baricitinib, and
abrocitinib, all of which are now approved for the treatment of
moderate to severe AD in several countries and territories, inhibit
the JAK-STAT pathway and can thus simultaneously reduce the
signaling of multiple cytokines (including IL-4, IL-13, IL-22, IL-
31, TSLP, and IFN-g)13 that contribute to the pathology and
symptomology of AD.104 Upadacitinib and abrocitinib are
second-generation selective JAK inhibitors with greater selec-
tivity toward JAK1 than the other JAKs, whereas baricitinib is a
first-generation selective JAK1 and JAK2 inhibitor.105 These 3
JAK inhibitors differ in their chemical structure,105 and they
have all demonstrated efficacy in placebo-controlled clinical tri-
als, as well as over the long term, with acceptable safety profiles
(Table I).106-116 No head-to-head trials between upadacitinib,
abrocitinib, and baricitinib have been conducted; therefore, com-
parisons between efficacy and safety outcomes cannot be made.

TYK2 inhibitors have also been investigated for the treatment
of immune-mediated dermatologic conditions. Similar to other
JAK family members, TYK2 may play a role in signaling of
cytokines (such as IL-23, IL-12, and IL-13) that are associated
with the pathology of AD (Fig 1). An oral TYK2 inhibitor,
deucravacitinib, has been approved for psoriasis and is under
investigation for multiple immune-mediated inflammatory dis-
eases, but it has not been investigated in AD to date. The topical
TYK2/JAK1 inhibitor brepocitinib also demonstrated efficacy
versus vehicle at higher doses in a phase 2 study in patients
with moderate to severe AD117; however, the future development
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status of brepocitinib for AD remains unknown (Table I). The ef-
ficacy of TYK2 inhibitors for the management of AD remains
speculative.

Overall, JAK inhibitors, specifically JAK1 inhibitors, are
highly efficacious treatments for moderate to severe AD, likely
owing to multiple polar cytokine targeting, which may be
required to optimize outcomes for patients with a disorder as
complex and heterogeneous as AD. A recent review with expert
commentary on different AD therapies discusses rationale for
therapy choices in more detail.103 Furthermore, IL-13, TSLP, IL-
17, and IL-22 have been implicated in the ‘‘atopic march,’’118,119

suggesting that the JAK-STAT pathway may also be involved in
progression of atopic diseases from AD to allergic rhinitis and
asthma.120 The role of JAK inhibitors in prevention of the atopic
march remains to be investigated.
CONCLUSIONS
Unlike the primarily TH17/IL-23–centered inflammation in pso-

riasis, AD involves multiple inflammatory pathways (TH2, TH22,
TH1, and TH17 cells), with varying contributions driving the het-
erogeneity of AD across multiple disease subtypes and over time.
The JAK-STAT pathway plays a central role in the pathology and
symptomology of AD. Indeed, many key cytokines involved in
the pathology of AD signal via the JAK-STAT pathway, with
JAK1 involved in IL-4, IL-13, IL-22, IL-31, TSLP, and IFN-g
signaling. Therefore, targeting the JAK-STAT pathway offers a
new therapeutic modality for the treatment of AD.
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